Arithmetically-free group-gradings of Lie algebras: II

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Gradings on Simple Lie Algebras in Positive Characteristic

In this paper we describe all gradings by a finite abelian group G on the following Lie algebras over an algebraically closed field F of characteristic p = 2: sln(F ) (n not divisible by p), son(F ) (n ≥ 5, n = 8) and spn(F ) (n ≥ 6, n even).

متن کامل

Fine Gradings on Simple Classical Lie Algebras

The fine abelian group gradings on the simple classical Lie algebras (including D4) over algebraically closed fields of characteristic 0 are determined up to equivalence. This is achieved by assigning certain invariant to such gradings that involve central graded division algebras and suitable sesquilinear forms on free modules over them.

متن کامل

Gradings of Non-graded Hamiltonian Lie Algebras

A thin Lie algebra is a Lie algebra graded over the positive integers satisfying a certain narrowness condition. We describe several cyclic grading of the modular Hamiltonian Lie algebras H(2 : n;ω2) (of dimension one less than a power of p) from which we construct infinite-dimensional thin Lie algebras. In the process we provide an explicit identification of H(2 : n;ω2) with a Block algebra. W...

متن کامل

Jordan Gradings on Exceptional Simple Lie Algebras

Models of all the gradings on the exceptional simple Lie algebras induced by Jordan subgroups of their groups of automorphisms are provided.

متن کامل

Classification of Good Gradings of Simple Lie Algebras

We study and give a complete classification of good Zgradings of all simple finite-dimensional Lie algebras. This problem arose in the quantum Hamiltonian reduction for affine Lie algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2017

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2017.09.014